Abstract

Camellia oleifera is an important plant species that produces edible oils. Understanding the double fertilization of this plant is critical for studies concerning crossbreeding, self-incompatibility, and the biological mechanisms underlying hybridization. We aimed to characterize pollen tube growth and double fertilization in C. oleifera. The female and male parent cultivars (Huashuo and Xianglin XLC15, respectively) were used for artificial pollination. Growth of the pollen tube in the style, ovary, and ovule from pollination to fertilization and the cytological characteristics of female and male gamete fusion during double fertilization were observed using fluorescence and scanning electron microscopy (SEM). Numerous pollen grains germinated 2 to 4 hours after pollination. The pollen tubes entered the interspaces between the papillar cells, grew along the stylar canal, and aggregated at the one-third site of the style. They grew in the gradually narrowing stylar canal, entering the locule. The tubes turned 90° and entered the embryo sac through the micropyle; subsequently, they entered a degenerated synergid, where the spermatids were released. One sperm nucleus fused with the polar nucleus, forming the primary endosperm nucleus, whereas the other sperm fused with the egg, forming the zygote. The polar nucleus was fertilized earlier than the egg. Double fertilization of C. oleifera is characterized as pre-mitotic gametogony. The current results lay a theoretical foundation for studies concerning the crossbreeding and embryology of C. oleifera and provide fundamental data concerning the reproductive biology of the genus Camellia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.