Abstract
The local topological zeta function is a rational function associated to a germ of a complex holomorphic function. This function can be computed from an embedded resolution of singularities of the germ. For functions that are nondegenerate with respect to their Newton polyhedron it is also possible to compute it from the Newton polyhedron. Both ways give rise to a set of candidate poles of the topological zeta function, containing all poles. For plane curves, W. Veys showed how to filter the actual poles out of the candidate poles induced by the resolution graph. In this Note we show how to determine from the Newton polyhedron of a nondegenerate plane curve which candidate poles are actual poles. To cite this article: A. Lemahieu, L. Van Proeyen, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.