Abstract

The first Painlevé hierarchy, which is a sequence of higher order analogues of the first Painlevé equation, follows from the singular manifold equations for the mKdV hierarchy. For meromorphic solutions of the first Painlevé hierarchy, we give a lower estimate for the number of poles; which is regarded as an extension of one corresponding to the first Painlevé equation, and which indicates a conjecture on the growth order. From our main result, two corollaries follow: one is the transcendency of meromorphic solutions, and the other is a lower estimate for the frequency of α-points. An essential part of our proof is estimation of certain sums concerning the poles of each meromorphic solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.