Abstract

Friction-induced self-excited linear vibration is often governed by a second-order matrix differential equation of motion with an asymmetric stiffness matrix. The asymmetric terms are product of friction coefficient and the normal stiffness at the contact interface. When the friction coefficient becomes high enough, the resultant vibration becomes unstable as frequencies of two conjugate pairs of complex eigenvalues (poles) coalesce (when viscous damping is low). This short paper presents a receptance-based inverse method for assigning complex poles to second-order asymmetric systems through (active) state-feedback control of a combination of active stiffness, active damping and active mass, which is capable of assigning negative real parts to stabilise an unstable system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.