Abstract

Cells in a variety of developmental contexts sense extracellular cues that are given locally on their surfaces, and subsequently amplify the initial signal to achieve cell polarization. Drosophila wing cells acquire planar polarity along the proximal-distal (P-D) axis, in which the amplification of the presumptive cue involves assembly of a multiprotein complex that spans distal and proximal boundaries of adjacent cells. Here we pursue the mechanisms that place one of the components, Frizzled (Fz), at the distal side. Intracellular particles of GFP-tagged Fz moved preferentially toward distal boundaries before Fz::GFP and other components were tightly localized at the P/D cortex. Arrays of microtubules (MTs) were approximately oriented along the P-D axis and these MTs contributed to the formation of the cortical complex. Furthermore, there appeared to be a bias in the P-D MTs, with slightly more plus ends oriented distally. The hypothesis of polarized vesicular trafficking of Fz is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.