Abstract

The magnetic and structural properties of two-dimensional spatially ordered systems of ferromagnetic nickel nanowires embedded into an Al2O3 matrix have been studied using polarized small-angle neutron scattering (polarized SANS). We measured the total (nuclear and magnetic) scattering I(q) as a polarization-independent scattering, the field-dependent scattering as IH(q) = I(q, H) − I(q, 0), where H is the magnetic field, and the nuclear-magnetic interference as a polarization-dependent (P) scattering ΔI(q, P). A typical scattering pattern is composed of the diffuse small-angle scattering and the Bragg peak. It is shown that the introduction of Ni into the matrix does not change the position of the Bragg peak but results in an increase of the scattering intensity both in the small-angle region and at the Bragg positions. An external magnetic field was applied perpendicular or parallel to the long dimension of the nanowires in order to reveal the anisotropic properties of the magnetic system. It is shown that, firstly, the magnetic-field-dependent scattering IH(q) provides new and principally different information as compared with the interference term ΔI(q). Secondly, two contributions to the interference term ΔI(q) (ascribed to the diffuse scattering and to the diffraction peaks) have different signs indicating different origins of the scattering objects. Thirdly, polarized SANS gives a detailed picture of the magnetization process, which could not be obtained by methods of standard magnetometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.