Abstract
Polarization mode dispersion and the polarization decorrelation and diffusion lengths are calculated in fibers with randomly varying birefringence. Two different physical models in which the birefringence orientation varies arbitrarily are studied and are shown to yield nearly identical results. These models are appropriate for communication fibers. We show that both the length scales for polarization mode dispersion and polarization decorrelation measured with respect to the local axes of birefringence are equal to the fiber autocorrelation length. We also show that the coupled nonlinear Schrodinger equation which describes wave evolution over long length along a communication fiber can be reduced to the Manakov equation. The appropriate averaging length for the linear polarization mode dispersion is just the fiber autocorrelation length but the appropriate averaging length for the nonlinear terms is the diffusion length in the azimuthal direction along the Poincare sphere which can be different, The implications for the nonlinear evolution are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.