Abstract

We demonstrate design and characterization of a polarization-independent ultra-broadband absorber of light consisting of periodic array of graphene disks on top of a lossless quarter-wavelength dielectric spacer placed on a metallic reflector. The absorber is duly designed based on impedance matching concept by proposing a fully analytical circuit model resulting in a normalized bandwidth of 100 % in the terahertz regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.