Abstract

We report on the polarity control of ZnO grown by plasma assisted molecular beam epitaxy on Ga polar (0001) GaN/sapphire templates simply via the oxygen‐to‐Zn (VI/II) ratio during the growth of a thin nucleation layer at 300 °C. Following Zn pre‐exposure, the ZnO layers nucleated with low VI/II ratios (<1.5) exhibited Zn‐polarity. Those nucleated with VI/II ratios above 1.5, exhibited O‐polarity. Supported by scanning transmission electron microscopic imaging, we have unequivocally demonstrated that polarity inversion takes place without formation of any vertical inversion domains and within one monolayer of presumably non‐stoichiometric GaOx formed at the ZnO/GaN interface. A direct correlation between polarity and strain sign of ZnO layers has been found. The Zn‐polar ZnO layers were under tensile biaxial strain, whereas the O‐polar material exhibited compressive strain. Moreover, the amount of residual strain varied linearly with VI/II ratio used during the low‐temperature nucleation layer growth. Strain control with VI/II ratio has been explained by the potential formation of Zn interstitials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.