Abstract

We present numerical simulations of the periodic polarimetric variations produced by a binary star placed at the center of an empty spherical cavity inside a circumbinary ellipsoidal and optically thin envelope made of dust grains. Mie single-scattering is considered along with pre- and post-scattering extinction factors which produce a time-varying optical depth and affect the morphology of the periodic variations. We are interested in the effects that various parameters will have on the average polarization, the amplitude of the polarimetric variations, and the morphology of the variability. We show that the absolute amplitudes of the variations are smaller for Mie scattering than for Thomson scattering. Among the four grain types that we have studied, the highest polarizations are produced by grains with sizes in the range 0.1-0.2 micron. In general, the variations are seen twice per orbit. In some cases, because spherical dust grains have an asymmetric scattering function, the polarimetric curves produced also show variations seen once per orbit. Circumstellar disks produce polarimetric variations of greater amplitude than circumbinary envelopes. Another goal of these simulations is to see if the 1978 BME (Brown, McLean, & Emslie, ApJ, 68, 415) formalism, which uses a Fourier analysis of the polarimetric variations to find the orbital inclination for Thomson-scattering envelopes, can still be used for Mie scattering. We find that this is the case, if the amplitude of the variations is sufficient and the true inclinations is i_true > 45 deg. For eccentric orbits, the first-order coefficients of the Fourier fit, instead of second-order ones, can be used to find almost all inclinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.