Abstract

Topographic variations caused by the range and the azimuth terrain slopes induce polarization orientation changes which cause the polarization to rotate about the line of sight. The existence of these variations reduce the accuracy measurement of geophysical parameters from polarimetric synthetic aperture radar (PolSAR) images. For this reason most inversion studies are best done in area of flat earth. In area which has significant terrain variations require compensation for topography. In real situations, terrain slopes rotate the polarization basis of the polarimetric scattering matrices by an orientation angle shift, and induce significant cross-polarization power. In this paper, two methods have been investigated using the polarimetric orientation angle (PAO): the first one involves the rotation of the polarimetric scattering and coherency matrices to achieve maximum azimuthally asymmetry for polarimetric data compensation to ensure accurate estimation of geophysical parameters in rugged terrain areas. The second approach has been developed which measures azimuth and range terrain slopes that are related to shifts in polarization orientation angle. Terrain elevation maps relative to a plane parallel to the radar line of sight can then be generated by integrating these slopes requiring only one PolSAR flight pass by combing orientation angle estimation and a shape-from-shading technique (SFS) which is mostly used by the computer vision community. Experimental results with C-band polarimetric RADARSAT2 data are used evaluate the data compensation algorithm and DEM generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.