Abstract

We investigate, using direct numerical simulations, the effects of viscoelasticity on pressure driven flows of thermally decomposable liquids in channels. A numerical algorithm based on the finite difference method is implemented in time and space with the Phan–Thien–Tanner as the model for the viscoelastic liquids. The strong dependence of fluid temperature on the Frank–Kamenetskii parameter is shown for various fluid types and the phenomenon of thermal runaway is demonstrated. It is shown that viscoelastic fluids have in general delayed susceptibility to thermal runaway as compared with corresponding inelastic fluids. This paper demonstrates the efficiency of using semi-implicit finite difference schemes in solving transient problems of coupled nonlinear systems. It also provides an understanding of nonisothermal flows of viscoelastic fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.