Abstract

Functions of the Laplace operator F(− Δ) can be synthesized from the solution operator to the wave equation. When F is the characteristic function of [0, R 2 ], this gives a representation for radial Fourier inversion. A number of topics related to pointwise convergence or divergence of such inversion, as R → ∞, are studied in this article. In some cases, including analysis on Euclidean space, sphers, hyperbolic space, and certain other symmetric spaces, exact formulas for fundamental solutions to wave equations are available. In other cases, parametrices and other tools of microlocal analysis are effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.