Abstract

We introduce a class of Lévy processes subject to specific regularity conditions, and consider their Feynman–Kac semigroups given under a Kato-class potential. Using new techniques, first we analyze the rate of decay of eigenfunctions at infinity. We prove bounds on $\lambda$-subaveraging functions, from which we derive two-sided sharp pointwise estimates on the ground state, and obtain upper bounds on all other eigenfunctions. Next, by using these results, we analyze intrinsic ultracontractivity and related properties of the semigroup refining them by the concept of ground state domination and asymptotic versions. We establish the relationships of these properties, derive sharp necessary and sufficient conditions for their validity in terms of the behavior of the Lévy density and the potential at infinity, define the concept of borderline potential for the asymptotic properties and give probabilistic and variational characterizations. These results are amply illustrated by key examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.