Abstract
We introduce a novel method to interpolate a set of data points as well as unit tangent vectors or unit normal vectors at the data points by means of a B-spline curve interpolation technique using geometric algorithms. The advantages of our algorithm are that it has a compact representation, it does not require the magnitudes of the tangent vectors or normal vectors, and it has C 2 continuity. We compare our method with the conventional curve interpolation methods, namely, the standard point interpolation method, the method introduced by Piegl and Tiller, which interpolates points as well as the first derivatives at every point, and the piecewise cubic Hermite interpolation method. Examples are provided to demonstrate the effectiveness of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.