Abstract
A new scheme for implementing a reduced order model for complex mesh-based numerical models (e.g. finite element unstructured mesh models), is presented. The matrix and source term vector of the full model are projected onto the reduced bases. The proper orthogonal decomposition (POD) is used to form the reduced bases. The reduced order modeling code is simple to implement even with complex governing equations, discretization methods and nonlinear parameterizations. Importantly, the model order reduction code is independent of the implementation details of the full model code. For nonlinear problems, a perturbation approach is used to help accelerate the matrix equation assembly process based on the assumption that the discretized system of equations has a polynomial representation and can thus be created by a summation of pre-formed matrices.In this paper, by applying the new approach, the POD reduced order model is implemented on an unstructured mesh finite element fluid flow model, and is applied to 3D flows. The error between the full order finite element solution and the reduced order model POD solution is estimated. The feasibility and accuracy of the reduced order model applied to 3D fluid flows are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.