Abstract

With the increased climatic change and modern grid complexity, extreme grid power outage events caused by natural calamity and human interruptions have led to an urgency to enhance the grid resiliency. Microgrids (MGs) have proved to be a concrete solution to these situations. However, these events are quite uncertain, leading to the unintentional island of MGs that has adverse effects. Thus, as a first step toward increasing grid resiliency with MG, informing the distributed generations about the unintentional island is a critical task. Hence, there is a need to develop a quick and reliable unintentional island detection scheme. Micro phasor measurement units (μPMUs) are becoming popular in MG. Given this, this study proposes an inadvertent island detection scheme in an MG using an intelligent μPMU. With the μPMU, the voltage at solar generator bus is measured, three features are extracted through spectral kurtosis and random forest classifier is employed for island detection. After island detection, a control methodology is proposed to circumvent the post-effects. The method has zero non-detection zone, 99.83% accuracy and a detection time of 20 ms. The reliability of the algorithm is ascertained using the analytical hierarchical approach and software fault-tree analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.