Abstract

Increasing evidence has proved that miRNA plays a significant role in biological progress. In order to understand the etiology and mechanisms of various diseases, it is necessary to identify the essential miRNAs. However, it is time-consuming and expensive to identify essential miRNAs by using traditional biological experiments. It is critical to develop computational methods to predict potential essential miRNAs. In this study, we provided a new computational method (called PMMS) to identify essential miRNAs by using multi-head self-attention and sequences. First, PMMS computes the statistic and structure features and extracts the static feature by concatenating them. Second, PMMS extracts the deep learning original feature (BiLSTM-based feature) by using bi-directional long short-term memory (BiLSTM) and pre-miRNA sequences. In addition, we further obtained the multi-head self-attention feature (MS-based feature) based on BiLSTM-based feature and multi-head self-attention mechanism. By considering the importance of the subsequence of pre-miRNA to the static feature of miRNA, we obtained the deep learning final feature (WA-based feature) based on the weighted attention mechanism. Finally, we concatenated WA-based feature and static feature as an input to the multilayer perceptron) model to predict essential miRNAs. We conducted five-fold cross-validation to evaluate the prediction performance of PMMS. The areas under the ROC curves (AUC), the F1-score, and accuracy (ACC) are used as performance metrics. From the experimental results, PMMS obtained best prediction performances (AUC: 0.9556, F1-score: 0.9030, and ACC: 0.9097). It also outperformed other compared methods. The experimental results also illustrated that PMMS is an effective method to identify essential miRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.