Abstract
We present a method for direct determination of rate constants of complex formation, k(on), and dissociation, k(off). The method is termed plug-plug kinetic capillary electrophoresis (ppKCE). To explain the concept of the method, we consider the formation of a noncovalent complex C between molecules A and B; A is assumed to migrate slower in electrophoresis than B. In ppKCE, a short plug of A is injected into a capillary, followed by a short plug of B. When a high voltage is applied, the electrophoretic zone of B moves through that of A, allowing for the formation of C. When the zones of A and B are separated, C starts dissociating. The features of the resulting electropherogram are defined by both binding and dissociation. We developed a unique mathematical approach that allows finding k(on) and k(off) from a single electropherogram without nonlinear regression analysis. The approach uses algebraic functions with the only input parameters from electropherograms being areas and migration times of electrophoretic peaks. In this work, we explain theoretical bases of ppKCE and prove the principle of the method by finding k(on) and k(off) for a protein-ligand complex. The unique capability of the method to directly determine both k(on) and k(off) along with its simplicity make ppKCE highly attractive to a broad community of molecular scientists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.