Abstract

Cadmium intoxication induces lipid peroxidation and causes oxidative damage to various tissues by altering antioxidant defence system enzymes. At 24 h after treatment with a single intraperitoneal dose of cadmium chloride (5 mg kg-1), Swiss albino mice showed a significant increase in the levels of malanodialdehyde and xanthine oxidase (P<0.001), and a concomitant depletion of renal glutathione, catalase (P<0.001) and other antioxidant enzymes. CdCl2 also led to a simultaneous increase in micronuclei formation (P<0.001) and chromosomal aberrations (P<0.05) in mouse bone marrow cells. Oral pre-treatment with Pluchea lanceolata extract at doses of 100 and 200 mg kg-1 for 7 consecutive days before CdCl2 intoxication caused a significant reduction in malanodialdehyde formation and xanthine oxidase activity (P<0.001). A significant restoration of the activity of antioxidant defence system enzymes such as catalase, glutathione peroxidase (P<0.05), glutathione-S-transferase and glutathione reductase (P<0.001) was observed. A significant dose-dependent decrease in chromosomal aberrations and micronuclei formation was also observed (P<0.05). The results indicate that pre-treatment with P. lanceolata attenuates cadmium chloride induced oxidative stress and genotoxicity by altering antioxidant enzymes and reducing chromatid breaks and micronuclei formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.