Abstract

Plemelj projection operators are introduced for spaces of square integrable functions defined over the boundaries of a class of compact real n-dimensional manifolds lying in C^n. These manifolds posses many properties similar to domains in R^n, and are consequently called domain manifolds. The key ingredients used here are techniques from both real and complex Clifford analysis. Analogues of the Kerzman-Stein kernel and Szego projection operators ar introduced, and their conformal covariance is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.