Abstract

A design for a heteroepitaxial junction by the way of one-dimensional wurzite on a two-dimensional spinel structure in a low-temperature solution process was introduced, and it's capability was confirmed by successful fabrication of a diode consisting of p-type cobalt oxide (Co(3)O(4)) nanoplate/n-type zinc oxide (ZnO) nanorods, showing reasonable electrical performance. During thermal decomposition, the 30° rotated lattice orientation of Co(3)O(4) nanoplates from the orientation of β-Co(OH)(2) nanoplates was directly observed using high-resolution transmission electron microscopy. The epitaxial relations and the surface stress-induced ZnO nanowire growth on Co(3)O(4) were well supported using the first-principles calculations. Over the large area, (0001) preferred oriented ZnO nanorods epitaxially grown on the (111) plane of Co(3)O(4) nanoplates were experimentally obtained. Using this epitaxial p-n junction, a diode was fabricated. The ideality factor, turn-on voltage, and rectifying ratio of the diode were measured to be 2.38, 2.5 V and 10(4), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.