Abstract

Platelet-rich plasma (PRP) contains a high concentration of several growth factors and contributes to soft-tissue engineering and wound healing. However, the effect of PRP on human dermal fibroblast proliferation and responses is unknown. This was investigated in the present study using PRP prepared from the whole human blood using the double-spin method. Human dermal fibroblast cultures were established from skin samples collected during plastic surgery. Platelet concentration and growth factor levels in PRP were estimated, and a cell proliferation assay was carried out after PRP treatment. The role of Ras-dependent extracellular signal-regulated kinase (ERK)1/2 in the effects of PRP was investigated in human dermal fibroblasts by suppressing ERK1/2 expression with an inhibitor or by short interfering (si)RNA-mediated knockdown, and assessing ERK1/2 phosphorylation by western blotting as well as proliferation in PRP-treated cells. We found that PRP stimulated human dermal fibroblast proliferation, which was suppressed by ERK1/2 inhibitor treatment (P<0.01). ERK1/2 phosphorylation was increased in the presence of PRP, while siRNA-mediated knockdown of ERK1/2 blocked cell proliferation normally induced by PRP treatment (P<0.01). These results demonstrate that PRP induces human dermal fibroblast proliferation via activation of ERK1/2 signaling. Our findings provide a basis for the development of agents that can promote wound healing and can be applied to soft-tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.