Abstract
In human occluded saphenous vein grafts, we previously demonstrated cytotoxic foam cells, presumably derived from macrophages engulfing platelets. In the present study, we investigated whether platelet phagocytosis occurs in human atherosclerotic plaques, whether this activates macrophages, and whether the platelet constituent, amyloid precursor protein (APP), was involved. Immunohistochemistry documented the presence of APP, beta-amyloid peptide (Abeta, cleaved from APP), and platelets (CD9), along with inducible NO synthase (iNOS) and cyclooxygenase-2, two markers of macrophage activation, around microvessels in advanced human carotid artery plaques (n=18). Abeta colocalized with iNOS-expressing macrophages that were often surrounded by platelets. In vitro, murine J774 and human THP-1 macrophages were incubated with or without washed human platelets. Coincubation of macrophages and platelets led to platelet phagocytosis (electron and confocal microscopy) and formation of lipid-, APP-, and Abeta-containing foam cells. These expressed iNOS mRNA (reverse transcription-polymerase chain reaction) and protein and produced nitrite and tumor necrosis factor-alpha (ELISA). Macrophage pretreatment with 4-(2-aminoethyl)benzenesulfonyl fluoride, a protease inhibitor, reduced APP processing and inhibited NO biosynthesis induced by platelet phagocytosis but not by lipopolysaccharides. Human atherosclerotic plaques and J774 and THP-1 macrophages contained mRNA of the APP-cleaving enzyme beta-secretase. This is the first demonstration of Abeta, a peptide extensively studied in Alzheimer's disease, in human atherosclerotic plaques. It was present in activated iNOS-expressing perivascular macrophages that had phagocytized platelets. In vitro studies indicate that platelet phagocytosis leads to macrophage activation and suggest that platelet-derived APP is proteolytically processed to Abeta, resulting in iNOS induction. This represents a novel mechanism for macrophage activation in atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.