Abstract

Excitatory amino acids transduce physiological and pathological signals to neurons. Similarly, the neuroactive lipid platelet-activating factor (PAF) has been implicated in modulating long-term potentiation and neuronal survival. Excitatory amino acids and PAF have been shown to increase mitogen-activated protein (MAP) kinases in different cell types. Here, we have investigated the similarities and differences between PAF and kainate in activating MAP kinases in primary hippocampal neurons in vitro. Extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 kinases were activated by kainate or PAF in hippocampal neurons. This activation was blocked by the receptor antagonists CNQX and BN 50730 for kainate and PAF, respectively. The PAF receptor antagonist BN 50730 also blocked kainate activation. CNQX had no effect on PAF activation of the kinases, indicating that PAF is downstream of kainate activation. Coapplication of submaximal concentrations of PAF and kainate resulted in a less than additive activation, suggesting similar routes of activation by the two agonists. Both CNQX and BN 50730 blocked kainate-induced neurotoxicity. These results indicate that PAF and kainate activate similar kinase pathways. Therefore, PAF acts downstream of the kainate subtype of glutamate receptors, and when excessive receptor activation takes place, this bioactive lipid may contribute to neuronal cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.