Abstract

Increased levels of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) are found in several inflammatory dermatoses, but PAF's exact role in epidermis is uncertain. In order to better understand the physiological consequences of excess PAF production in epidermis, we examined the gene regulatory effects of PAF short-term stimulation in differentiated HaCaT keratinocytes by transcriptional profiling. Even though PAF induces COX2 expression, we found that PAF regulates only few genes associated with inflammation in differentiated keratinocytes. Rather, we show that natural PAF rapidly regulates genes involved in proliferation, (anti)-apoptosis and migration, all sub-processes of re-epithelialization and wound healing. Moreover, profiling of phosphorylated kinases, cellular wound-scratch experiments, resazurin assay and flow cytometry cell cycle phase analysis all support a role for PAF in keratinocyte proliferation and epidermal re-epithelialization. In conclusion, these results suggest that PAF acts as an activator of proliferation and may, therefore, function as a connector between inflammation and proliferation in differentiated keratinocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.