Abstract

The red algal subclass Nemaliophycidae includes both marine and freshwater taxa that contribute to more than half of the freshwater species in Rhodophyta. Given that these taxa inhabit diverse habitats, the Nemaliophycidae is a suitable model for studying environmental adaptation. For this purpose, we characterized plastid genomes of two freshwater species, Kumanoa americana (Batrachospermales) and Thorea hispida (Thoreales), and one marine species Palmaria palmata (Palmariales). Comparative genome analysis identified seven genes (ycf34, ycf35, ycf37, ycf46, ycf91, grx, and pbsA) that were different among marine and freshwater species. Among currently available red algal plastid genomes (127), four genes (pbsA, ycf34, ycf35, ycf37) were retained in most of the marine species. Among these, the pbsA gene, known for encoding heme oxygenase, had two additional copies (HMOX1 and HMOX2) that were newly discovered and were reported from previously red algal nuclear genomes. Each type of heme oxygenase had a different evolutionary history and special modifications (e.g., plastid targeting signal peptide). Based on this observation, we suggest that the plastid-encoded pbsA contributes to the iron controlling system in iron-deprived conditions. Thus, we highlight that this functional requirement may have prevented gene loss during the long evolutionary history of red algal plastid genomes.

Highlights

  • The red algal class Florideophyceae comprises 95% (6,748 spp. out of 7,100 spp.) of the Rhodophyta and encompass a biologically diversified group of taxa [1, 2]

  • The average coverage for the plastid genomes was 1,003x in T. hispida, 215x in K. americana, and 343x in P. palmata

  • In order to broaden the investigation of these putative habitat-specific genes, we extended the survey to include all currently available 127 red algal plastid genomes, which include 16 freshwater species, 109 marine species, and two brackish species (S3 Table)

Read more

Summary

Introduction

The red algal class Florideophyceae comprises 95% (6,748 spp. out of 7,100 spp.) of the Rhodophyta and encompass a biologically diversified group of taxa [1, 2]. Most of the red algal species (>95%) inhabit marine habitats, about 5% are found in freshwater environments [3]. The Nemaliophycidae, one of five subclasses within Florideophyceae, contains more than half of these freshwater species. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.