Abstract

AbstractSummary: Both intercalated and exfoliated poly(L,L‐lactide) (P(L,L‐LA)/organomodified montmorillonite nanocomposites were synthesized by in situ ring‐opening polymerization of L,L‐lactide, in bulk, directly in the presence of the nanofiller. Intercalation of polyester chains was found to appear even for natural unmodified montmorillonite‐Na+, while exfoliation occurred when the aluminosilicate layers were modified by ammonium cations bearing primary hydroxyl groups. Clay delamination was effectively triggered by the grafting reaction of the growing PLA chains onto the hydroxyl groups. Aluminium triisopropoxide, triethylaluminium, and stannous octoate, as initiating or co‐initiating species, were compared in terms of polymerization control. The influence of nanoclay content (from 1 to 10 wt.‐% in inorganics) on morphology and thermal behavior was also studied. In parallel, a highly filled nanocomposite (called masterbatch), prepared by in situ polymerization, was dispersed into a (plasticized) preformed polylactide matrix in the molten state, to reach a better clay delamination than that obtained by direct melt blending. Finally, L,L‐lactide and α,ω‐dihydroxylated poly(ethylene glycol) (PEG 1000) were copolymerized in presence of clay in order to study the behavior of the resulting triblocks towards nanocomposite formation.Significant exfoliation of clay platelets has been achieved in a commercial polylactide matrix using a “masterbatch” process (white arrows).magnified imageSignificant exfoliation of clay platelets has been achieved in a commercial polylactide matrix using a “masterbatch” process (white arrows).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.