Abstract

The present study investigates plasticity-induced martensitic transformation in two types of austenitic stainless steels SUS 304 and 316 L subjected to uniform tensile stresses at room and liquid nitrogen temperatures. The X-ray diffraction method was used in order to measure volume fractions of transformed α' and ε martensitic phases and to obtain the dependence of the volume fractions of these phases on the applied strain level ε. The difficulty in the measurement of the martensitic phases by the X-ray diffraction method caused by the preferred orientation which had been introduced during the rolling process and during the tensile tests was overcome by the help of Arnell's Method. Two types of target materials, i.e., Cu and Mo for the X-ray source were used to verify the accuracy and reproducibility of the present X-ray diffraction analyses. The results were also compared with those obtained by the saturation magnetization method using VSM, or vibrating-sample magnetometer reported elsewhere. It was revealed that α' was transformed in SUS 304 both at 297 and 77 K whereas in SUS 316L only at 77 K. Another type of martensitic phase, i. e., ε was transformed in the both steels only at 77 K. Almost the same values of the volume fractions of α' and ε phases were obtained by the two types of target materials. The plots of α' volume fraction obtained by the X-ray diffraction methods vs. that by VSM showed a good linear correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.