Abstract

The usage of plastic bottles in large quantities will cause serious pollution to the environment due to its poor biodegradability. The recycling of plastic waste with high added value for expanded applications needs to be explored and the poor mechanical properties should be resolved at the meantime. Herein, plastic waste was recycled into flexible nanofiber electrode based on electrospinning associated with acidified carbon nanotubes loaded inside/outside and electrodeposition of nano-MnO2 film outside. The fabricated plastic waste-based composites could be directly used as a supportable electrode with high conductivity, multistage aperture structure and efficient pseudo-capacitance. And the further assembled symmetric supercapacitors exhibited excellent flexibility, high energy capacity as the specific capacitance of 118.8 mF/cm2 at a scan rate of 10 mV/s and desirable cycle stability as 97.6 % capacitance retention over 5000 charge/discharge cycles. The strategies presented herein help alleviate the white pollution problem and realize the recycling and utilization of waste plastic products with high added value, which is a cost-effective and sustainable option to promote circular economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.