Abstract

We investigate oscillatory phase pattern formation and amplitude control for a linearized stochastic neuron field model by simulating Mexican-hat-coupled stochastic processes. We find, for several choices of parameters, that spatial pattern formation in the temporal phases of the coupled processes occurs if and only if their amplitudes are allowed to grow unrealistically large. Stimulated by recent work on homeostatic inhibitory plasticity, we introduce static and plastic (adaptive) systemic inhibitory mechanisms to keep the amplitudes stochastically bounded. We find that systems with static inhibition exhibited bounded amplitudes but no sustained phase patterns. With plastic systemic inhibition, on the other hand, the resulting systems exhibit both bounded amplitudes and sustained phase patterns. These results demonstrate that plastic inhibitory mechanisms in neural field models can dynamically control amplitudes while allowing patterns of phase synchronization to develop. Similar mechanisms of plastic systemic inhibition could play a role in regulating oscillatory functioning in the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.