Abstract
The effects of yield strength, σ y, and strain hardening exponent, n, on the plastic strain distribution underneath a Vickers indenter were explicitly examined by carrying out macro- and micro-indentation experiments on Al–Zn–Mg alloy that was aged for different times so as to obtain materials with different σ y but with similar n, or the same σ y but different n. Large Vickers indents were made (using a load of 700 N) that were subsequently sectioned along the median plane and the plastic strain distribution was determined by recourse to microindentation mapping. Comparison of the iso-strain contours shows that for similar values of n, higher σ y leads to a smaller deformation field in both the indentation ( z) and lateral ( x) directions. Higher n, at the same σ y, leads to a shallower deformation field. In all cases, it was found that strain fields are elliptical, with the long axis of the ellipse coinciding with the z-direction. The strain field ellipticity is sensitive to the work hardening behavior of the material, with higher n leading to lower ellipticity. While the lateral strain distribution is in agreement with the expanding cavity model, strain distribution directly ahead of the indenter tip appears to follow the Hutchison, Rice, and Rosengren fields ahead of a crack tip in an elastoplastic solid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.