Abstract
The deformation behavior of an Mg89Zn4Y7 (at.%) extruded alloy composed mostly of the long-period stacking ordered (LPSO) phases, was investigated at room temperature. Several heat-treatments were conducted for the extruded alloy in the temperature range between 400 and 525 °C, and the correlation between the microstructure and the mechanical properties were quantitatively examined. The yield stress of the as-extruded alloy showed extremely high value of ∼480 MPa. The deformation of the as-extruded alloy proceeded accompanied by the formation of deformation kinks and small amounts of non-basal slips. The microstructure of the extruded alloy was highly thermally stable and the yield stress showed little change by heat-treatments below 400 °C. However, the yield stress was gradually decreased by annealing above 400 °C. The yield stress of the alloys annealed at and above 475 °C showed discontinuous decreases with increasing annealing temperature. The yield stress of the annealed specimens could be estimated by the Hall–Petch relationship by regarding the length of the long-axis of plate-like grains as the grain size. This suggests that the basal (0001) slip governed the plastic behavior of the LPSO-phase alloy composed of randomly oriented grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.