Abstract

Here we report an easily fabricated, plastic-based lateral flow device for carrying out metalloimmunoassays. The device is called ocFlow to emphasize the open-channel design. We have shown that the ocFlow is capable of magnetic microbead (MμB)-based metalloimmunoassays for the detection of two types of immunoconjugates: a model composite (MC) and a sandwich immunoassay for the heart failure marker NT-proBNP. In both assays, Ag nanoparticles (AgNPs) were used as electrochemically detectable labels. NT-proBNP and MC concentrations as low as 750.0 pM and 10.0 pM, respectively, could be detected using the ocFlow device. Four key conclusions can be drawn from the results presented herein. First, immunoconjugates attached to the MμBs can be transported in the flow channel using combined hydrodynamic and capillary pressure passive pumping. Second, the ocFlow device is capable of on-chip storage, resolvation, and conjugate formation of both the MC and NT-proBNP composites. Third, electrochemical detection can be conducted on analytes suspended in serum by rinsing the electrodes with a wash buffer. Finally, and perhaps most significantly, the assay is quantitative and has a detection limit for NT-proBNP in the high picomolar range when the necessary reagents are stored on the device in a dry form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.