Abstract

An end-coupled composite-slot-cavity resonator (CSCR) is proposed based on the subwavelength metal-insulator-metal (MIM) waveguides. When compared with the perfect slot cavity, which acts as a Fabry–Perot resonator, plasmonic-induced absorption effect is achieved in the CSCR system. Single or dual absorption windows will arise at the former transmission peaks by arranging the position of vertical-slot cavity in the CSCR. According to the analyses on the phase responses, abnormal dispersions will be achieved inside the windows. Therefore, one can manipulate the fast-light applications in the nano-scale integrated circuits. Furthermore, based on the same interference effect, plasmonic-induced transparency response with normal dispersion is also obtained by changing the end-coupled CSCR system to a side-coupled one. The performances of the proposed structure are analyzed and investigated using the coupled mode theory and the finite-difference time-domain method, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.