Abstract

AbstractThe development of a stable, non‐toxic material that emits electrons following absorption of visible light may have a major impact on the solar photocatalysis of difficult reactions such as CO2 and N2 reduction, as well as for targeted chemical transformations in general. Diamond is a good candidate, however it is a wide bandgap material requiring deep UV photons ( <227 nm) to promote electrons from the valence band into the conduction band. Embedding silver nanoparticles under the diamond surface allows the photoconductivity of the diamond in the spectral region of the surface plasmon resonance to be increased, while also leading to an enhancement of visible light photoemission. Considering the low intensity of the light sources used in this work and the spectral properties of the enhanced photoconductivity and photoemission a mechanism based on plasmonically enhanced photoconductivity which in turn allows surface states emptied by photoemission to be recharged thus leading to enhanced photoemission in the visible range is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.