Abstract

Nanocoating of single microbial cells with gold nanostructures can confer optical, electrical, thermal, and mechanical properties to microorganisms, thus enabling new avenues for their control, study, application, and detection. Cell nanocoating is often performed using layer-by-layer (LbL) deposition. LbL is time-consuming and relies on nonspecific electrostatic interactions, which limit potential applications for microbial diagnostics. Here, we show that, by taking advantage of surface molecules densely present in the microbial outer layers, cell nanocoating with gold nanoparticles can be achieved within seconds using surface molecules, including disulfide- bond-containing (Dsbc) proteins and chitin. A simple activation of these markers and their subsequent interaction with gold nanoparticles allow specific microbial screening and quantification of bacteria and fungi within 5 and 30 min, respectively. The use of plasmonics and fluorescence as transduction methods offers a limit of detection below 35 cfumL-1 for E. coli bacteria and 1500 cfumL-1 for M. circinelloides fungi using a hand-held fluorescent reader. Graphical abstract A new concept for rapid microbial screening by targeting disulfide - bond-containing (Dsbc) proteins and chitin with reducing agents and gold nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.