Abstract

This paper presents a plasmonic circuit that has been monolithically integrated with electronic devices on a silicon substrate and then discusses the concept behind this circuit. To form the proposed circuit, two plasmonic waveguides and a detector are integrated with metal–oxide–semiconductor field-effect transistors (MOSFETs) on the substrate. In the circuit, intensity signals or coherent plasmonic signals are generated by coherent light at an operating wavelength at which silicon is transparent, and these signals propagate along the waveguides before they are converted into electrical signals by the detector. These electrical intensity and coherent signals then drive the MOSFETs during both DC and AC operation. The measured performances of the devices indicate that surface plasmon polaritons propagate on the metal surface at the speed of light and drive the electronic devices without any absorption in the silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.