Abstract

We have theoretically and numerically investigated an analog of electromagnetically induced transparency (EIT) in plasmonic systems consisting of multiple cascaded nanodisk resonators, aperture-side-coupled to metal-insulator-metal bus waveguides. A simplified theoretical model is established to study spectral features in the plasmonic waveguide-resonator systems, and the calculated results are in good agreement with finite-difference time-domain simulations. The main dependent factors of EIT-like spectral response, namely, the resonance detuning, intrinsic Drude loss, and especially cavity-cavity separation, are discussed in detail. Similar to multiple EIT in quantum systems, multiple induced-transparency peaks are found in the areas of strong dispersion generated in our plasmonic system. The group indices and quality factors of transparency resonances with high transmission can reach levels of \ensuremath{\sim}35 and \ensuremath{\sim}200, respectively. These results pave a way toward dynamic control of light in the nanoscale domain, which can actualize some new devices for fundamental study and applications of plasmonic nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.