Abstract

Optical extinction in a metal–semiconductor metamaterial based on a AlGaAs matrix, which contains random arrays of AsSb plasmon nanoinclusions, is studied. The metamaterial is grown by molecular beam epitaxy at a low temperature. A system of nanoinclusions of various sizes is formed by annealing at temperatures 400, 500, and 600°C. Investigation of the sample’s microstructure by transmission electron microscopy shows that the average size of nanoinclusions at the used annealing temperatures is 4–7, 5–8, and 6–9 nm, respectively. It is shown experimentally that AsSb nanoparticle arrays in the AlGaAs matrix cause the resonant absorption of light. It is established that the plasmon-resonance parameters found in the metamaterial are almost independent of the sizes of the AsSb nanoinclusions. The plasmon-resonance energy is (1.47 ± 0.01) eV, while its full width at half maximum is (0.19 ± 0.01) eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.