Abstract

The recent surge of theoretical research and experimental effort to devise plasmon-induced hot-carrier devices for radiation harvesting relies on the capability to separate charges at metal–semiconductor interfaces; however, the demand for momentum conservation of hot carriers at these interfaces sets an inherent limit to the quantum yield of such devices, making them currently less efficient than commonly used solar cells. Here we report experiments that suggest that ballistic whole-metal plasmon-induced hot carriers junctions based on atomic contacts could potentially be as efficient as semiconductor-based photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.