Abstract

Direct evidence of the effects of the localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs) in TiO2 photoanodes on the performance enhancement in quasi-solid-state dye-sensitized solar cells (DSCs) is reported by comparing gold/silica core–shell nanoparticles (Au@SiO2 NPs) and hollow silica nanoparticles with the same shell size of the core–shell nanoparticles. The Au nanoparticles were shelled by a thin SiO2 layer to produce the core–shell structure, and the SiO2 hollow spheres were made by dissolving the Au cores of the gold/silica core–shell nanoparticles. Therefore, the size and morphology of the SiO2 hollow spheres were the same as the Au@SiO2 NPs. The energy conversion efficiency was improved nearly 36% upon incorporating the Au nanoparticles, mostly due to the increase in Jsc, while Voc and FF were unchanged. The improvement was mostly contributed by the LSPR of the Au@SiO2 NPs, whereas the other parameters, such as the electron lifetime and electron diffusion coefficient, were nearly unchanged. Therefore, LSPR is an effective tool in improving the photocurrent and consequently the performance of DSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.