Abstract

Pan-microbial inactivation technologies that do not require high temperatures, reactive chemical compounds, or UV radiation could address gaps in current infection control strategies and provide efficient sterilization of biologics in the biotechnological industry. Here, we demonstrate that femtosecond (fs) laser irradiation of resonant gold nanoparticles (NPs) under conditions that allow for E-field mediated cavitation and shockwave generation achieve an efficient plasmon-enhanced photonic microbial pathogen inactivation. We demonstrate that this NP-enhanced, physical inactivation approach is effective against a diverse group of pathogens, including both enveloped and non-enveloped viruses, and a variety of bacteria and mycoplasma. Photonic inactivation is wavelength-dependent and in the absence of plasmonic enhancement from NPs, negligible levels of microbial inactivation are observed in the near-infrared (NIR) at 800 nm. This changes upon addition of resonant plasmonic NPs, which provide a strong enhancement of inactivation of viral and bacterial contaminants. Importantly, the plasmon-enhanced 800 nm femtosecond (fs)-pulse induced inactivation was selective to pathogens. No measurable damage was observed for antibodies included as representative biologics under identical conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.