Abstract

The purpose of this study was to investigate the role of plasminogen (Plg) in stem cell-mediated cardiac repair and regeneration after myocardial infarction (MI). An MI induces irreversible tissue damage, eventually leading to heart failure. Bone marrow (BM)-derived stem cells promote tissue repair and regeneration after MI. Thrombolytic treatment with Plg activators significantly improves the clinical outcome in MI by restoring cardiac perfusion. However, the role of Plg in stem cell-mediated cardiac repair remains unclear. An MI was induced in Plg-deficient (Plg(-/-)) and wild-type (Plg(+/+)) mice by ligation of the left anterior descending coronary artery. Stem cells were visualized by invivo tracking of green fluorescent protein (GFP)-expressing BM cells after BM transplantation. Cardiac function, stem cell homing, and signaling pathways downstream of Plg were examined. Granulocyte colony-stimulating factor, a stem cell mobilizer, significantly promoted BM-derived stem cell (GFP(+)c-kit(+) cell) recruitment into the infarcted heart and stem cell-mediated cardiac repair in Plg(+/+) mice. However, Plgdeficiency markedly inhibited stem cell homing and cardiac repair, suggesting that Plg is critical for stem cell-mediated cardiac repair. Moreover, Plg regulated C-X-C chemokine receptor type 4 (CXCR4) expression in stem cells invivo and invitro through matrix metalloproteinase-9. Lentiviral reconstitution of CXCR4 expression in BM cells successfully rescued stem cell homing to the infarcted heart in Plg-deficient mice, indicating that CXCR4 has a critical role in Plg-mediated stem cell homing after MI. These findings have identified a novel role for Plg in stem cell-mediated cardiac repair after MI. Thus, targeting Plg may offer a new therapeutic strategy for stem cell-mediated cardiac repair after MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.