Abstract

In this work, the effects of wood flour and tetraethyl orthosilicate (TEOS) content on the fusion time, fusion torque, fusion temperature, and fusion energy of polyvinyl chloride/wood flour (PVC/WF) composites were studied. Plasma-assisted surface treatment of WF before modifying with TEOS to form the silica nanoparticles on the surface of wood flour plays a role as a reinforcement of the phase interaction. This modification was confirmed by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM) techniques. Moreover, BET data showed that specific surface area and volume of plasma treated WF and TEOS modified WF (WS) were considerably improved in comparison with original WF. By increasing WF, a remarkable increase in time, temperature, and energy of mixing process led to the enhancement of fusion torque. In the case of composite using WS, the increase of TEOS content resulted in shorter fusion time, whereas the other fusion characteristics of composites increased. The investigation of mechanical and rheological properties such as Young’s modulus and dynamic storage modulus G′ showed the stiffness of the PVC/WF composites has been significantly improved with increasing wood flour and modifier contents. The research showed an application of nanoparticles in the industrial production of polymer composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.