Abstract

High-k, low leakage thin films are crucial components for dynamic random access memory (DRAM) capacitors with high storage density and a long storage lifetime. In this work, we demonstrate a method to increase the dielectric constant and decrease the leakage current density of atomic layer deposited BaTiO3 thin films at low process temperature (250 °C) using postdeposition remote oxygen plasma treatment. The dielectric constant increased from 51 (as-deposited) to 122 (plasma-treated), and the leakage current density decreased by 1 order of magnitude. We ascribe such improvements to the crystallization and densification of the film induced by high-energy ion bombardments on the film surface during the plasma treatment. Plasma-induced crystallization presented in this work may have an immediate impact on fabricating and manufacturing DRAM capacitors due to its simplicity and compatibility with industrial standard thin film processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.