Abstract
AbstractThe design and the development of novel scaffold materials for tissue engineering have attracted much interest in recent years. Especially, the prepared nanofibrillar scaffold materials from biocompatible and biodegradable polymers by electrospinning are promising materials to be used in biomedical applications. In this study, we propose to produce low‐cost and cell‐friendly bacterial electrospun PHB polymeric scaffolds by using Alcaligenes eutrophus DSM 545 strain to PHB production. The produced PHB was characterized by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Nanofibrous scaffolds were fabricated via electrospinning method that has a fiber diameter approximately 700–800 nm. To investigate cell attachment, cell growth, and antioxidant enzyme activity on positively and negatively charged PHB scaffold, PHB surface was modified by plasma polymerization technique using polyethylene glycol (PEG) and ethylenediamine (EDA). According to the results of superoxide dismutase (SOD) activity study, PEG‐modified nanofibrillar scaffolds indicated more cellular resistance against oxidative stress compared to the EDA modification. As can be seen in cell proliferation results, EDA modification enhanced the cell proliferation more than PEG modification, while PEG modification is better as compared with nonmodified scaffolds. In general, through plasma polymerization technique, surface modified nanofibrillar structures are effective substrates for cell attachment and outgrowth. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.