Abstract

The lateral hypothalamus has an important role in regulating food and water intake. We have investigated the endogenous release of monoamines from the lateral hypothalamus during manipulations of plasma osmolality and circulating volume. Adult male Sprague-Dawley rats implanted with carbon paste in vivo electrochemical (EC) electrodes in the lateral hypothalamus were placed on a 72-h water deprivation schedule. Although the carbon paste EC electrode has an intrinsically ambiguous signal in which changes in ascorbic acid may appear as changes in catechol concentrations, pharmacologic studies in lateral hypothalamus indicated that the electrode most likely measured norepinephrine and possibly epinephrine. On the test day, the EC electrodes were scanned with linear sweep voltammetry from -0.2 to +0.4 V at a rate of 5 mV/s. Semiderivative signal processing showed catechol and hydroxyindole peaks at +0.11 and +0.23 V, respectively. Baseline recordings were made prior to rats drinking distilled water, 10% sucrose, 5% dextrose, 0.30% NaCl, 0.90% NaCl, or 10% d-mannitol. To control for the act of drinking, other implanted dehydrated rats were intraperitoneally injected with 5% dextrose, 0.30% NaCl, or 0.90% NaCl. To dissociate the effects of osmolality and circulating volume on the EC response, hydrated rats implanted with EC electrodes were subcutaneously injected with 12% NaCl or intraperitoneally injected with 35% polyethylene glycol. Other rats subjected to water deprivation and osmotic challenges were decapitated and trunk blood was collected for measurements of plasma osmolality and hematocrit. Similar experiments were conducted using homozygous Brattleboro rats which lack arginine vasopressin (AVP) but which preserve normal plasma osmolality with prodigious drinking.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.