Abstract

Titanium alloys are found in many applications where weight saving, strength, corrosion resistance, and biocompatibility are important design priorities. However, their poor tri‐ bological behavior is a major drawback, and many surface engineering processes have been developed to enhance wear in titanium alloys such as nitriding. Plasma (ion) nitrid‐ ing, originally developed for ferrous alloys, has been adopted to address wear concerns in titanium alloys. Plasma nitriding improves the wear resistance of titanium alloys by the formation of a thin surface layer composed of TiN and Ti2N titanium nitrides (e.g., compound layer). Nonetheless, plasma nitriding treatments of titanium alloys typically involve high temperatures (700–1100°C) that promote detrimental microstructural changes in titanium substrates, formation of brittle surface layers, and deterioration of mechanical properties especially fatigue strength. This chapter summarizes the previous and ongoing investigations in the field of plasma nitriding of titanium alloys, with partic‐ ular emphasis on the authors’ recent efforts in optimization of the process to achieve tri‐ bological improvements while maintaining mechanical properties. The development of low-temperature plasma nitriding treatments for α + β and near-β titanium alloys and further wear improvements by alteration of near-surface microstructure prior to nitriding are also briefly reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.