Abstract

There is limited evidence on the relationships between plasma levels of multiple metals and risk of incident cancer in patients with type 2 diabetes mellitus (T2DM). We examined the associations between plasma levels of 12 metals (iron, copper, zinc, selenium, chromium, manganese, molybdenum, cobalt, nickel, arsenic, cadmium, and lead) and cancer risk in 4573 T2DM patients using Cox proportional hazards models. With a median follow-up of 10.2 years, 541 incident cancers were identified. The multiple-metals model revealed that each 1-SD increase in ln-transformed plasma copper (HR: 1.14; 95%CI: 1.02, 1.27) and lead (HR:1.20; 95%CI:1.03, 1.39) were significantly associated with increased cancer incidence while each 1-SD increase in ln-transformed plasma zinc (HR: 0.82; 95%CI: 0.71, 0.96) and chromium (HR: 0.88; 95%CI: 0.82, 0.94) were significantly associated with decreased cancer incidence. When all participants were further stratified into four subgroups by the quartile levels (Q1–4) of plasma metals, manganese showed significant positive associations with cancer incidence in the upper two quartiles (P trend = 0.003) while nickel showed significant negative associations with cancer incidence in Q2 and 4 groups (P trend = 0.033) compared with participants in Q1 group. Collectively, monitoring of metal levels in diabetic patients needs to be strengthened, which is of great significance for the prevention of incident cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.